Shirkah
Journal of Economics and Business
Shirkah
Journal of Economics and Business
Vol. 1, No. 1, January-April 2016
ISSN: 2503-4235 (p); 2503-4243 (e)

Editor in Chief
Sri Walyoto

Editorial Boards
Ahmad Ihwan Setiawan, Faculty of Economics, Universitas Sebelas Maret
Dwi Condro Triono, Faculty of Islamic Economics and Business, IAIN Surakarta
Fahmy Radhi, Faculty of Economics, Universitas Gadjah Mada
Jaka Sriyana, Faculty of Economics, Universitas Islam Indonesia

Managing Editors
M. Endy Saputro
M. Zainal Anwar

Assistant to Editor
Supriyanto

Shirkah Journal of Economics and Business is a peer-reviewed journal published three times a year (January-April, May-August and September-December) by Faculty of Islamic Economics and Business, Institut Agama Islam Negeri (IAIN/State Institute for Islamic Studies) Surakarta Central Java, Indonesia. The main objective of Shirkah is to offer an academic space of exchange ideas and initiate the increase number of qualified article produced by postgraduate students, practitioners and academicians.

Editorial Office
Ruang Jurnal Shirkah
Lantai Dasar, Sayap Barat, Fakultas Ekonomi dan Bisnis Islam, IAIN Surakarta
Jln. Pandawa No. 1, Kartasura, Sukoharjo, Jawa Tengah Kode Pos. 57168
Phone (+62271) 781516 Fax: (+62271)782336
E-mail: shirkahiainsurakarta@gmail.com
Website: http://shirkah.or.id/
Table of Contents

Articles

Muthmainah
An Academic Forecast Analysis

Meilana Widyaningsih
The Effect of Material, Social and Activities Compensations toward Work Performance Using Organizational Commitment as The Mediator

Tri Wahyuni
The Influence of Technology Acceptance Model (TAM) on The Users’ Behavior of Sikesya Application in IAIN Surakarta

M. Nidaussalam
Mudaraba as a Model of Islamic Finance

Sri Maryati
Evaluating The Performance of Inventory Management The Production Division of PT. Tiga Serangkai Surakarta as a Case Study

Mardhiyaturrositaningsih
Sharia Banking’s Profit Loss Finance in the Context of ASEAN Economic Community
The Influence of Technology Acceptance Model (TAM) on The Users’ Behavior of Sikesya Application in IAIN Surakarta

Tri Wahyuni
PT. Sukses Abadi Karya Inti - Sragen

Abstract
This study aimed at evaluating the student acceptance of SIKESYA (Sharia Financial System/Sikesya) application as the users by using the framework of Technology Acceptance Model (TAM) and its development. The constructs being tested in this research are perceived usefulness, perceived ease of use, experience, social influence, attitude toward behavior, behavioral intention, facilitating condition, and user behaviors. As much as 80 students has been chosen as sample which were determined using purposive sampling method. The data gathered was then analyzed using partial least square (PLS). The result showed that experience did not influence the perceived ease of use, on the other hand perceived usefulness has a positive influence toward users attitude and behavior in using Sikesya, while the perceived ease of use did not influence the users attitude and behavior at all, since the students would still use it as it is an application used as part of university services. The attitude and behavior did not influence the behavioral intention, whereas the social influence has a positive effect on behavioral intention, yet the behavioral intention gave positive impact to user’s behavior. On the other hand, facilitating condition has no effect toward users’ behavior.

Keywords:
Sharia Financial System (SIKESYA), Technology Acceptance Model (TAM), IAIN Surakarta

Information system has started to apply on every organization, means every information system’s learning and training is really needed by students. Practical class of Sistem Keuangan Syariah (SIKESYA) for
Akuntansi Sharia student is very salient providing experience for the students therefore they will know information system (IT) to support their work. Some students still find difficulties in applying SIKESYA even though they have practiced it in class. These difficulties are due to SIKESYA system complexity and difficult pattern. The application and understanding’s difficulty in SIKESYA application will badly affect SIKESYA application with system rejection and it will be failing system application.

Student’s difficulty in system application is the system application problem as stated by Widiatmaka and Sensue (2014), “New system application will always create reaction to its users.” The reaction is in acceptance or rejection. Davis (1993) said that low user’s acceptance will affect new information system application’s success. Davis (1993) said information system use’s success depends on system user’s acceptance. Low user’s acceptance will affect system application success. The organization needs to know its manager and employers’ appreciation on the use of information system. The organization’s research on constructions will define manager and employers’ acceptance on in use information system.

Students as the user of information system are also needed to be evaluated. The new system application such as SIKESYA not necessarily benefitted the students. It dues the accountancy process in the system does not provide help for the student, in fact it will bring difficulties. Therefore, this research is salient to evaluate applied system for accountancy students in money management. The model in use to research students’ behavior is TAM. Technology Acceptance Model (TAM) is a new model with utilization and trusted convenience in behavior which will user practically ease-ready to use. Many information system user behavior’s researches use TAM (Kusumo, 2010). TAM, theoretically, is the most correct model to explain how users accept a system (Handayani, Kustini, and Sunyoto, 2013).
Technology Acceptance Model (TAM) is the correct method to predict user’s intention in using the system, providing valuable information, and simple and easily applicable model. Many researchers stated TAM model is better than other models (Jogiyanto, 2007, p. 120). There are five main constructions on first Technology Acceptance Model’s before modification, namely: perception utility, easiness perception utility, attitude on behavior, behavior’s intention, and behavior (Jogiyanto, 2007, pp. 113-114). There are many researchers developing TAM theories to make it more useful.

Yusman (2013) used Technology Acceptance Model to study SIKD user’s behavior. The tested construction in this research is utility perception construction, convenience perception, technology using attitude, technology using behavior intention, and real technology using. The research concludes TAM constructions truly underlie an individual’s fact using. Handayani, Kusrini, and Sunyoto (2013) used TAM framework to test the affected factors of technology acceptance level. The TAM developing in this research adds usability construction. There are 3 TAM constructions in use, namely user perception on convenience, user perception on utility, and user attitude on technology using.

Rizal (2014) used TAM model to analyze project management information system acceptance. The tested variables for this purpose are usability convenience, utility, intention to use, likeness to use, and the real utility. Kusumo (2010) wanted to discern m-banking user acceptance with TAM framework using. Kusumo also added complexity variable to be tested in TAM framework. The research result shows system’s complexity considered will enhance work performance.

Ari (2013) developed TAM with adding social effect construction and facilitator condition among 5 other constructions. Those 5 constructions are utility perception, utility convenience perception, attitude behavior,
behavior’s interest, and utility behavior. Retnoningrum and Jalil (2013) developed TAM with adding external variable namely user’s experience and pleasure perception variable. This test shows individual experience in using technology will make technology using interaction easier, more fun, and satisfying. However the experience does not affect utility perception.

The research will retest constructions used by Ari (2013) with title “Technology Acceptance Model Effect and Its Development in Core Banking System Using Attitude.” The researcher develops the current study with different object research and adding one tested construction. The previous study is on general bank at Malang Raya and next research is on SIKESYA at IAIN Surakarta. The adding construction is experience. Experience construction is also added on study by Retnoningrum and Jalil in TAM development. The researcher is also adding experience construction due to theoretically direct experience with information system will be intermediary direct relation of utility’s purpose and convenience. Easy direct experience will support attitude in information system technology using.

Utility Perception and Attitude Behavior: A Hypothesis

The tested constructions in this research comes from Ari’s (2013) research, namely utility perception, utility convenience perception, attitude behavior, social effect, attitude interest, and facilitator conditions. The researcher added experience construction to develop the study. Experience is one of the control variables used by Venkatesh et al. (2003) to test real attitude’s interest and utility on technology. Therefore the researcher has hypothesis are:

H$_1$: experience affects utility convenience perception.

H$_2$: utility perception affects the SIKESYA using attitude behavior.

H$_3$: utility convenience perception affects SIKESYA using attitude behavior.
H₄: attitude behavior affects the SIKESYA using attitude interest.
H₅: social effect affects the SIKESYA using attitude interest.
H₆: attitude interest affects the SIKESYA using behavior.
H₇: Facilitators’ conditions affect the SIKESYA using attitude.

The population of this research is all students of Akuntansi Syariah Fakultas Ekonomi dan Bisnis Islam IAIN Surakarta students who take class of SIKESYA practice. The data are analyzed with multivariate. Total sample members are minimum 10x of studied variable, namely 10 X 8 = 80. It means the minimum samples of this research are 80 (Roscoe, as quoted in Sugiono, 2012, p. 133). The technique sampling in use is purposive sampling.

Data was intentionally gathered from questionnaire, interview, and bibliographical study. The questionnaire purpose contains students’ response on the researchers’ question. Interview’s purpose is to grasp information on studied issues, and bibliographic study is supporting research data with sources from books, journal under graduate thesis, and graduate thesis. The concept in this research is Technology Acceptance Model (TAM) and its development by Ari (2013). It is tested with 87 variables/ constructions, namely 4 Exogenous latent Variables and 4 Endogenous Latent Variables.
The exogenous latent variables are:

a. Utility perception;
b. Experience;
c. Social effect;
d. Facilitator conditions.

The endogenous latent variables are:

a. Utility convenience perception;
b. Behavior attitude;
c. Behavior interest;
d. User behavior.

The instrument in use to collect data is questionnaire sheet. The measurement design scale in use is Likert’s scale with score 1 to 5:

Construction, definition, and indicators used in the research are explained on table below:

Variable Operational Definition

<table>
<thead>
<tr>
<th>Source</th>
<th>Construction</th>
<th>Definition</th>
<th>Indicators</th>
</tr>
</thead>
</table>
| Ari (2013) | Utility perception | Individual’s assurance in using *SIKESYA* to enhance his/ her performance | 1. Finish the job faster
2. Performance enhancement
3. Productivity enhancement
4. Effectiveness enhancement
5. Made the job easier
6. Useful in job |
| Jogiyanto (2007) | Experience | Learning process and good behavioral potential development’s addition in formal and non-formal, or a process to bring a person into higher behavior. | 1. Followed training
2. Gaining experience in system application |
Data analysis technique in use

Data analysis technique in use is Partial Least Square (LPS) with SmartPLS 2.0 M3 application. PLS is a multivariate statistic technique, using comparison of double dependent variables and double independent variables. PLS measures model test and structural model test. Measurement model is use to test validity and reliability. Structural model is used for hypothesis test (Jogiyanto, 2009, pp. 11-14).
Testing Results

Measurement model test is carried out with SmartPLS 2.0 M3 program. There are two main established parameters, namely construction validity test and validity test. Construction validity test consists of convergent validity test and discriminant validity test. There are 80 samples.

Convergent validity test

1) Utility Perception

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th></th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP1 <- KP</td>
<td>0.819</td>
<td>0.810</td>
<td>0.057</td>
<td>0.057</td>
<td>14.302751</td>
<td>Valid</td>
</tr>
<tr>
<td>KP2 <- KP</td>
<td>0.821</td>
<td>0.822</td>
<td>0.037</td>
<td>0.037</td>
<td>22.370546</td>
<td>Valid</td>
</tr>
<tr>
<td>KP3 <- KP</td>
<td>0.838</td>
<td>0.817</td>
<td>0.071</td>
<td>0.071</td>
<td>11.803266</td>
<td>Valid</td>
</tr>
<tr>
<td>KP4 <- KP</td>
<td>0.765</td>
<td>0.742</td>
<td>0.106</td>
<td>0.106</td>
<td>7.216747</td>
<td>Valid</td>
</tr>
<tr>
<td>KP5 <- KP</td>
<td>0.525</td>
<td>0.537</td>
<td>0.122</td>
<td>0.122</td>
<td>4.299363</td>
<td>Valid</td>
</tr>
<tr>
<td>KP6 <- KP</td>
<td>0.617</td>
<td>0.599</td>
<td>0.121</td>
<td>0.121</td>
<td>5.108766</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

Based on the Outer Loadings table above, all indicators of utility construction perception has fulfilled convergent validity due to score higher than 0.5.

2) Experience

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th></th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 <- P</td>
<td>0.898</td>
<td>0.763</td>
<td>0.358</td>
<td>0.358</td>
<td>2.506377</td>
<td>Valid</td>
</tr>
<tr>
<td>P2 <- P</td>
<td>0.774</td>
<td>0.609</td>
<td>0.459</td>
<td>0.459</td>
<td>1.688748</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015
Base on the Outer Loadings table above, all indicators of experience construction has fulfilled convergent validity due to score higher than 0.5.

3) Social Effect

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1 <- PS</td>
<td>0.763</td>
<td>0.772</td>
<td>0.082</td>
<td>0.082</td>
<td>9.279498</td>
</tr>
<tr>
<td>PS2 <- PS</td>
<td>0.778</td>
<td>0.758</td>
<td>0.112</td>
<td>0.112</td>
<td>6.971746</td>
</tr>
<tr>
<td>PS3 <- PS</td>
<td>0.733</td>
<td>0.696</td>
<td>0.158</td>
<td>0.158</td>
<td>4.632524</td>
</tr>
<tr>
<td>PS4 <- PS</td>
<td>0.616</td>
<td>0.577</td>
<td>0.180</td>
<td>0.180</td>
<td>3.418354</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

Base on the Outer Loadings table above, all indicators of social effect construction has fulfilled convergent validity due to score higher than 0.5.

4) Facilitator Conditions

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKP1 <- KKP</td>
<td>0.706</td>
<td>0.658</td>
<td>0.175</td>
<td>0.175</td>
<td>4.039167</td>
</tr>
<tr>
<td>KKP2 <- KKP</td>
<td>0.497</td>
<td>0.454</td>
<td>0.240</td>
<td>0.240</td>
<td>2.073766</td>
</tr>
<tr>
<td>KKP3 <- KKP</td>
<td>0.754</td>
<td>0.679</td>
<td>0.218</td>
<td>0.218</td>
<td>3.463192</td>
</tr>
<tr>
<td>KKP4 <- KKP</td>
<td>0.800</td>
<td>0.708</td>
<td>0.220</td>
<td>0.221</td>
<td>3.625847</td>
</tr>
<tr>
<td>KKP5 <- KKP</td>
<td>0.112</td>
<td>0.166</td>
<td>0.284</td>
<td>0.285</td>
<td>0.393948</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015
Base on the Outer Loadings table above, all indicators of KPP1, KPP3, and KPP4 has fulfilled convergent validity criteria due to loading scale score higher than 0.5. KPP2 and KPP5 have not fulfilled the validity; therefore these indicators will be erased and re-estimated. After re-estimation the values shown on the table are:

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th></th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKP1 <- KKP</td>
<td>0.698</td>
<td>0.698</td>
<td>0.152</td>
<td>0.152</td>
<td>4.586533</td>
<td>Valid</td>
</tr>
<tr>
<td>KKP3 <- KKP</td>
<td>0.812</td>
<td>0.761</td>
<td>0.197</td>
<td>0.197</td>
<td>4.122672</td>
<td>Valid</td>
</tr>
<tr>
<td>KKP4 <- KKP</td>
<td>0.826</td>
<td>0.765</td>
<td>0.192</td>
<td>0.192</td>
<td>4.313475</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

The result above shows loading score values have fulfilled determined convergent validity standard. It means there are three facilitator conditions indicators which will be processed on the next level.

5) Utility Convenience Perception

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th></th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistics</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPP1 <- KKP</td>
<td>0.633</td>
<td>0.552</td>
<td>0.218</td>
<td>0.218304</td>
<td>2.89898</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP2 <- KKP</td>
<td>0.741</td>
<td>0.700</td>
<td>0.141</td>
<td>0.141462</td>
<td>5.238559</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP3 <- KKP</td>
<td>0.771</td>
<td>0.734</td>
<td>0.136</td>
<td>0.135916</td>
<td>5.669334</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP4 <- KKP</td>
<td>0.646</td>
<td>0.628</td>
<td>0.182</td>
<td>0.182049</td>
<td>3.548145</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP5 <- KKP</td>
<td>0.656</td>
<td>0.644</td>
<td>0.159</td>
<td>0.158873</td>
<td>4.12635</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP6 <- KKP</td>
<td>0.720</td>
<td>0.693</td>
<td>0.145</td>
<td>0.144842</td>
<td>4.972123</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP7 <- KPP</td>
<td>-0.487</td>
<td>-0.476</td>
<td>0.158</td>
<td>0.157536</td>
<td>3.093741</td>
<td>Not valid</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015
Base on the Outer Load in table above, all indicators of utility convenience construction perception have fulfilled convergent validity due to score higher than 0.5. There is one indicator has not fulfill validity namely KPP7. This indicator is erased and re-estimated. The value after re-estimation is shown on table below:

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th></th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPP1 <- KPP</td>
<td>0.649</td>
<td>0.578</td>
<td>0.221</td>
<td>0.221</td>
<td>2.93192</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP2 <- KPP</td>
<td>0.750</td>
<td>0.715</td>
<td>0.120</td>
<td>0.120</td>
<td>6.276854</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP3 <- KPP</td>
<td>0.774</td>
<td>0.741</td>
<td>0.107</td>
<td>0.107</td>
<td>7.258674</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP4 <- KPP</td>
<td>0.639</td>
<td>0.627</td>
<td>0.160</td>
<td>0.160</td>
<td>4.00516</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP5 <- KPP</td>
<td>0.657</td>
<td>0.657</td>
<td>0.112</td>
<td>0.112</td>
<td>5.861532</td>
<td>Valid</td>
</tr>
<tr>
<td>KPP6 <- KPP</td>
<td>0.712</td>
<td>0.691</td>
<td>0.133</td>
<td>0.133</td>
<td>5.370543</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

The result above shows loading score values of all indicators has fulfilled determined convergent validity standard. It means there are six indicators of utility convenience perception to process on the next level.

6) Behavior Attitude

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th></th>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1 <- SP</td>
<td>0.842</td>
<td>0.828</td>
<td>0.061</td>
<td>0.061</td>
<td>13.766418</td>
<td>Valid</td>
</tr>
<tr>
<td>SP2 <- SP</td>
<td>0.796</td>
<td>0.788</td>
<td>0.063</td>
<td>0.063</td>
<td>12.673008</td>
<td>Valid</td>
</tr>
<tr>
<td>SP3 <- SP</td>
<td>0.673</td>
<td>0.660</td>
<td>0.127</td>
<td>0.127</td>
<td>5.312012</td>
<td>Valid</td>
</tr>
<tr>
<td>SP4 <- SP</td>
<td>0.752</td>
<td>0.753</td>
<td>0.066</td>
<td>0.066</td>
<td>11.401654</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

Vol. 1 No. 1, January - April 2016
The result above shows all indicators loading score values of behavior attitude construction has fulfilled convergent validity due to score higher than 0.5.

7) Behavior Interest

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1 <- MP</td>
<td>0.827</td>
<td>0.816</td>
<td>0.061</td>
<td>0.061</td>
<td>13.452359</td>
</tr>
<tr>
<td>MP2 <- MP</td>
<td>0.845</td>
<td>0.840</td>
<td>0.047</td>
<td>0.047</td>
<td>18.06518</td>
</tr>
<tr>
<td>MP3 <- MP</td>
<td>0.900</td>
<td>0.889</td>
<td>0.032</td>
<td>0.032</td>
<td>27.776836</td>
</tr>
<tr>
<td>MP4 <- MP</td>
<td>0.845</td>
<td>0.843</td>
<td>0.044</td>
<td>0.044</td>
<td>19.263172</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

The result above shows all indicators loading score values of behavior interest construction has fulfilled convergent validity due to loading score value higher than 0.5.

8) Utility Behavior

Table 11

Outer Loadings (Mean, STDEV, T-Values)

<table>
<thead>
<tr>
<th>Original Sample (O)</th>
<th>Sample Mean (M)</th>
<th>(STDEV)</th>
<th>(STERR)</th>
<th>T Statistic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 <- P</td>
<td>0.878</td>
<td>0.700</td>
<td>0.449</td>
<td>0.449</td>
<td>1.954255</td>
</tr>
<tr>
<td>P2 <- P</td>
<td>0.801</td>
<td>0.549</td>
<td>0.541</td>
<td>0.541</td>
<td>1.480286</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015
Base on the calculation above all indicators loading score values of user behavior construction has fulfilled convergent validity due to score loading value higher than 0.5.

Discriminant Validity Test

Measured parameter in this test is comparing the root of AVE (table 4.17) of a construction should be higher than latent inter variable correlation (table 4.18), or watch cross loading.

Discriminant validity test result shows on the table below:

Average Variance Extracted (AVE)

<table>
<thead>
<tr>
<th></th>
<th>AVE</th>
<th>AKAR AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKP</td>
<td>0.515743</td>
<td>0.718152</td>
</tr>
<tr>
<td>KP</td>
<td>0.548006</td>
<td>0.740274</td>
</tr>
<tr>
<td>KPP</td>
<td>0.488425</td>
<td>0.698874</td>
</tr>
<tr>
<td>MP</td>
<td>0.726429</td>
<td>0.852308</td>
</tr>
<tr>
<td>P</td>
<td>0.703125</td>
<td>0.838525</td>
</tr>
<tr>
<td>PP</td>
<td>0.788192</td>
<td>0.887802</td>
</tr>
<tr>
<td>PS</td>
<td>0.526049</td>
<td>0.725292</td>
</tr>
<tr>
<td>SP</td>
<td>0.590062</td>
<td>0.768155</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

<table>
<thead>
<tr>
<th></th>
<th>KKP</th>
<th>KP</th>
<th>KPP</th>
<th>MP</th>
<th>P</th>
<th>PP</th>
<th>PS</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP</td>
<td>0.392656</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KPP</td>
<td>0.509518</td>
<td>0.617952</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.675152</td>
<td>0.440127</td>
<td>0.588526</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.175615</td>
<td>0.405908</td>
<td>0.182253</td>
<td>0.155717</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>0.358925</td>
<td>0.173792</td>
<td>0.266353</td>
<td>0.607217</td>
<td>0.141126</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13

Latent Variable Correlation
Base on the comparison of AVE root value on table 4.17 and inter latent variable correlation coefficient on the table above, concluded the indicator measurement of this research has consummated discriminant validity criteria.

Reliability Test

Measurement reliability shows a concept and variable measurement’s instrument stability and consistency. Reliability is measured with observing the Cronbach’s Alpha and Composite Reliability values. Cronbach’s Alpha measures the real value of construction reliability. The reliable construction should have Cronbach’s Alpha value > 0.6 and Composite Reliability should be > 0.7. The construction reliability test result shows on the table below:

<table>
<thead>
<tr>
<th></th>
<th>Cronbach’s Alpha</th>
<th>Composite Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKP</td>
<td>0.688777</td>
<td>0.806482</td>
</tr>
<tr>
<td>KP</td>
<td>0.828049</td>
<td>0.87638</td>
</tr>
<tr>
<td>KPP</td>
<td>0.792525</td>
<td>0.850669</td>
</tr>
<tr>
<td>MP</td>
<td>0.874262</td>
<td>0.913892</td>
</tr>
<tr>
<td>P</td>
<td>0.588778</td>
<td>0.824901</td>
</tr>
<tr>
<td>PP</td>
<td>0.731522</td>
<td>0.881544</td>
</tr>
<tr>
<td>PS</td>
<td>0.712506</td>
<td>0.815006</td>
</tr>
<tr>
<td>SP</td>
<td>0.768617</td>
<td>0.851171</td>
</tr>
</tbody>
</table>

Source: SmartPLS 2.0 M3 Processed Data Result, 2015
The table above shows most of constructions have Cronbach’s Alpha value higher than 0.6 and Composite Reliability value higher than 0.7. There is one construction with Cronbach’s Alpha value smaller than 0.6, experience construction. This construction is considered reliable due to in term Composite Reliability value of 0.7. The conclusion is all measurement in this research is reliable.

Structural Model Test (Inner Model)

1. **Goodness of Fit Model Test**

 This test is carried out with R-Square value observation with goodness of fit model test. The test result is shown on the table below:

<table>
<thead>
<tr>
<th>R-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKP</td>
</tr>
<tr>
<td>KP</td>
</tr>
<tr>
<td>KPP</td>
</tr>
<tr>
<td>MP</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>PP</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>SP</td>
</tr>
</tbody>
</table>

 Source: SmartPLS 2.0 M3 Processed Data Result, 2015

 Table R-Square above shows the utility convenience construction perception is affected by 3% experience construction, behavior attitude construction is affected by 49% utility convenience construction perception, behavior interest construction is affected by 37% behavior attitude construction and social effect construction, and utility behavior construction is affected by 37% facilitator conditions and behavior
intention construction.

2. Significant Test

Significant test is carried out with observing path coefficient value, namely coefficient showing significant level in hypothesis test. The hypothesis used in this research is one tail hypothesis. The hypothesis will be accepted whether it has t-statistic value higher than 1.64. Significant test results with SmartPLS 2.0 M3 program are:

PLS Bootstrapping

Source: SmartPLS 2.0 M3 Processed Data Result, 2015
Path Coefficient Result

| Path | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | Standard Error (STERR) | T Statistics (|O/STERR|) | Decision |
|---------------|---------------------|-----------------|----------------------------|------------------------|--------------------------|------------|
| P -> KPP | 0.182253 | 0.202641 | 0.216821 | 0.216821 | 0.840569 | H₁ rejected|
| KP -> SP | 0.584469 | 0.555083 | 0.13998 | 0.13998 | 4.175385 | H₂ accepted|
| KPP -> SP | 0.166666 | 0.205362 | 0.117563 | 0.117563 | 1.417672 | H₃ rejected|
| SP -> MP | 0.202997 | 0.20539 | 0.158185 | 0.158185 | 1.283291 | H₄ rejected|
| PS -> MP | 0.451739 | 0.47777 | 0.164883 | 0.164883 | 2.739752 | H₅ accepted|
| MP -> PP | 0.670541 | 0.633781 | 0.159625 | 0.159625 | 4.200721 | H₆ accepted|
| KKP -> PP | -0.09379 | -0.04591 | 0.141873 | 0.141873 | 0.661103 | H₇ rejected|

Source: SmartPLS 2.0 M3 Processed Data Result, 2015

Testing Result: An Academic Discussion

H_1 statistic test result is $t_{count} = 0.840569$ and beta coefficient value = 0.182253. It means $t_{count} < t_{table}$ and H_1 is rejected. Experience construction does not have significant effect on utility convenience perception. It means an individual with experience or training does not provide him/her with convenience in system or application using. It due to *Akutansi Syariah* students who join training is without intensive using. The training could not provide convenience in *SIKESYA* using.

H_2 test result shows utility perception has positive effect on behavior attitude on *SIKESYA*. It shows on t_{count} value $4.175385 > t_{table}$ value 1.645 with $\alpha = 0.05$. Beta coefficient value shows positive effect of 0.584469. It shows the higher an individual trusts on *SIKESYA* using will enhance performance, therefore he/she will like *SIKESYA* more. Students with positive attitude toward *SIKESYA* due to its provided utility value, therefore it will satisfy the application using. The research result is similar to those of Yusman (2013) and Ari (2013).
H₃ test result is \(t_{\text{count}} \) value of 1.417672, therefore H₃ statement is rejected. It proved utility convenience perception does not affect the behavior attitude in SIKESYA using. User in this research context is student. They use SIKESYA as obligation due to SIKESYA practice class. The students’ easiness or difficulty will not affect their using. This research result is similar with Kartika’s (2013).

H₄ test result shows \(t_{\text{count}} \) value of 1.283291. It means H₄ is rejected, and concludes behavior attitude does not have significant effect on behavior interest on SIKESYA using. It means an individual likeness on a system does not guarantee his/ her interest on the system. The students are using SIKESYA due to their interest not their likeness. Their interest is more on performance to support and demand on them to use the system. It is similar with the research of Taylor and Todd (1995) mentioned in Fathinah and Baridwan (2012).

Test on social effect and behavior interest shows \(t_{\text{count}} \) value of 2.739752. It means H₅ is accepted. Effect direction is positive, shown by the positive beta coefficient value, of 0.451739. Therefore the higher the support of people around him/ her, the higher his/ her interest in SIKESYA using. Friend and organization’s support will enhance student interest in using SIKESYA application. This result is similar to Ari’s research (2013) and Handayani’s (2005)

H₆ test result shows beta coefficient value of 0.670541, and \(t_{\text{count}} \) of 4.200721. Therefore \(t_{\text{count}} > t_{\text{table}} \), means H₆ is accepted. It means behavior interest has positive effect on individual behavior in SIKESYA using. Therefore the higher an individual behavior on SIKESYA using has a background of higher interest. This result is supporting the theory. It is similar with the research results of Ari (2013), Fathinah and Baridwan (2012), Davis (1989), and Handayani (2005).
H₇ is not accepted due to t_{count} of 0.661103 is less than t_{table}. It means individual trust level on organization and technical infrastructure does not affect the individual behavior on SIKESYA using. Respondent inclines to agree on available organization and technical infrastructure in supporting SIKESYA. This research result shows no effect of facilitator conditions on utility behavior. Base on Ari research (2013) it dues to hygiene factor. This factor is a term to describe working aspect to avoid unsatisfied condition for an individual.

Hygiene factor is part of theory two factors. This theory said individual behavior is affected by two factors, namely motivation factor and hygiene factor. The research result shows there is no motivation of the user to use system due to likeness and self-motivation. It is due to demand on him/ her to use the system. This result is similar with Ari’s research (2013).

CONCLUSION

The research purpose is finding the effect of Technology Acceptance Model (TAM) on user behavior in using Sistem Informasi Keuangan Syariah (SIKESYA) at IAIN Surakarta. Tested constructions in this research are experience, utility convenience perception, utility perception, behavior attitude, behavior interest, social effect, facilitator conditions, and user behavior. The conclusions are:

1. Experience does not affect the utility convenience perception dues to accountancy students’ limited experience with courses in class and not on intensive activities.
2. Utility perception has positive effect on behavior attitude in SIKESYA using, therefore the higher SIKESYA utility the higher student appreciation on this system.
3. Utility convenience perception does not affect behavior attitude in using SIKESYA. Students will still use SIKESYA without consideration on its difficulties or easiness.

4. Behavior attitude does not affect the behavior interest in using SIKESYA. Students use SIKESYA dues on demand to use it, not dues to likeness.

5. Social effect has positive effect in behavior attitude in using SIKESYA. Higher support from the people around will enhance student using SIKESYA.

6. Behavior interest has positive effect on SIKESYA utility behavior. The higher student interest, the higher potential of student in using SIKESYA.

7. Facilitator conditions do not affect SIKESYA utility behavior. It is due to facilitator conditions is a hygiene factor. It is a term to describe working aspect to avoid an individual dissatisfaction.

This research could not generalize due to its limited performed on students of Akuntansi Syariah Institut Program Agama Islam Negeri Surakarta. Tested variables in this research are experience, utility convenience perception, utility perception, behavior attitude, behavior interest, social effect, facilitator conditions, and user behavior. There are other variables able to affect SIKESYA using others than mentioned above.

SIKESYA application using in classes for institutions application indicates good utility of SIKESYA. Students’ good behavior on SIKESYA is due to provided utility value. Even though the students gain experience of SIKESYA, it does not provide easiness, and it is not an easy application. It could be overcome with higher training and using proportions which will lessen students’ difficulties. The next researcher should add more variables to define user behavior. This research result is 50% affected by non-tested variables. The next researcher should use potential respondents
using application intensively in their work. The next research should study on accountancy software.
References

Online

